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ABSTRACT
We present a multiagent organization for data interpreta-
tion and fusion in which each agent uses an encapsulated
Bayesian network for knowledge representation, and agents
communicate by exchanging beliefs (marginal posterior prob-
abilities) on shared variables. We call this organization
an Agent-Encapsulated Bayesian Network (AEBN) system.
Communication of probabilities among agents leads to ru-
mors, i.e. potential double counting of information. We
propose a new and correct method to compensate for ru-
mors in AEBN systems by passing extended messages that
contain joint probabilities.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Uncertainty, “fuzzy,” and probabilistic reasoning ;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, Intelligent agents,
Multiagent systems

General Terms
Algorithms, Design, Theory

Keywords
Communication protocols, Distributed problem solving, Knowl-
edge representation, Reasoning (single and multi-agent)

1. AGENT ENCAPSULATED BN SYSTEMS
An Agent Encapsulated Bayesian Network (AEBN) [1]

is an agent that utilizes a Bayesian network for its inter-
nal representation of the world. How the agent utilizes this
representation in decision support or goal based planning is
unimportant so long as the world view is updated based only
on local observations and observations received in the form
of probabilistic messages from communicating agents.

In an AEBN system the agents communicate through the
transmission of probability distributions on shared variables.
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The topology of the communication in the multiagent sys-
tem forms a DAG structure. The Bayesian network of each
agent can be divided into three distinct sets of variables: I,
those about which other agents have better knowledge; L,
those that are used only within the agent; and O, those that
this agent has the best knowledge of and that other agents
may want. This effectively produces two classes of variables
in the agent: its local variables, L, and its shared variables,
I and O.

The mechanism for integrating the view of the other agents
on a shared variable is to simply replace the agent’s current
belief in the variable with that of the communicating agent.
For this reason, all communication in the AEBN system oc-
curs through the passing of messages that essentially contain
the“correct”views on some shared variables. When an agent
receives one of these messages, it modifies its internal model
so that its local distribution either becomes consistent with
the other agents’ view or becomes inconsistent by entering
a zero probability configuration.

To update an agent’s distribution P (V ) with new evidence
Q(E1, E2, ..., En) for some set of variables {E1, E2, ..., En} =
I one calculates the joint probability P (V ), dividing by the
marginal probability P (I), and multiplying it by the new
distribution of {E1, E2, ..., En}. This corresponds to the ap-
plication of Jeffrey’s rule,

Q(I) = Q(E1) ·Q(E2) · ... ·Q(En), (1)

thus obtaining:

Q(V ) = P (V \I|I) ·Q(I) =
P (V )

P (I)
·Q(I). (2)

In the case in which the input variables are not independent
in the receiving agent, Equation 1 does not hold. (See [6,
Section 5] for a detailed discussion on this point.) Lemma 1
in [6] allows the replacement of Equation 2 by:

Q∗(V ) = P (V \I|I) ·Q(I) =
P (V )

P (I)
·Q∗

I(I), (3)

where Q∗
I is the I1-projection of probability distribution

P on the set of all distributions defined on I and having
Q(Ei), i = 1, ..., n, as their marginals. In practice, P (V )
could be updated to Q∗(V ) using the big clique algorithm
of [6, 2], lazy big clique algorithm of [3], or the wrapper meth-
ods of [5].
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Thus a mechanism similar to that already used for up-
dating probabilities in a Bayesian network adjusts the world
view of the agent, P (V ), into a conditional probability table
P (O|I). Note that this table is calculated using the local
observations of the agent: P (O|I) =

∑
L P (O, I, L)/P (I).

It then combines that table with the external view of the
inputs, Q(I), to allow the calculation of the new values for
the output variables Q(O).

Given this view of the purpose of each agent in the overall
system, an agent system may be considered an expansion of
the Bayesian network formalism to a DAG where the distri-
bution of the variables of one agent is obtained by condition-
ing on its input variables. This is not strictly the case for
two reasons. First, when input variables are not indepen-
dent in the receiving agent, then the calibration equation 2
must be replaced by the formally identical, but substantially
and computationally more complex equation 3.

Second, the oracular assumption imposes the additional
constraint that, in the agent system, unlike a Bayesian net-
work, all parents are not affected by their descendants. More
precisely, the only variables that may affect the variables in
an agent are (1) those in the agent itself and (2) those in a
preceding agent. In order to provide a formal definition of
“preceding agent,” we define a communication graph, where
the nodes represent agents and directed edges represent the
flow of messages labeled with the shared variables that are
being communicated. Let Ai and Aj be two distinct agents,
let Vi, Vj be the sets of variables in agent Ai and Aj , re-
spectively, and let Wi ⊆ Vi, Wj ⊆ Vj . Then if there is no
directed path in the communication graph from Aj to Ai,
any changes (whether by observation or by intervention) in
the state of the variables in Wj do not affect the state of
the variables in Wi. This is a very strong condition on the
distribution of the variables in different agents of the agent
system. This is not a symmetric relation, and therefore can-
not be represented by any independence relation, since every
independence relation is symmetric. In an AEBN, there is
no possibility for a variable in an agent to be affected by a
descendent agent.

2. RUMOR PROBLEM
Redundant influences arise in a communication graph when-

ever the combination of messages received by an agent causes
the belief in some shared variable to be over included. Con-
sider as an example a four-agent system (figure 1(a)), where
a supervisor agent fuses reports from two observer agents,
each of which reports information from a single sensor agent.
We can see the problem centers on the fact that the supervi-
sor agents view of the world, held in its Bayesian network, is
doubly influenced by the initial sensor reading (S), through
the reports (L1 and L2).

It is sufficient to identify all redundant influences by ex-
amining all pairwise node disjoint paths in the communica-
tion graph. Once they have been identified, a new graph,
known as the redundancy graph, is constructed. The redun-
dancy graph has the same nodes and edges as the communi-
cation graph, but its edge labels are expanded by adding the
names of the variables that have redundant influence flowing
through the edge. Figure 1(b) shows the redundancy graph
for the ROSE example. We propose a method of compensat-
ing for redundant influences where agent communication has
been expanded to pass joint probabilities along the appro-
priately labeled links in the redundancy graph, without any

change in the local Bayesian networks of each agent. A data
structure called the Redundancy Filter Tree is used to re-
move redundant influences from incoming messages before
an agent performs belief propagation in its local Bayesian
network. Space limitations prevent us from providing the
detailed algorithm and its proof of correctness, but see [4].
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Figure 1: Redundantly Observed Sensor Example.

3. CONCLUSIONS
The elimination of rumors in probabilistic agent commu-

nication is a difficult, longstanding problem that limits the
applicability of graphical probabilistic models for knowledge
representation in multiagent systems. Xiang [7] showed that,
under a number of postulated assumptions, a correct proba-
bilistic solution requires the topology of the communicating
agents to be a tree. We replaced some assumptions with
an oracular assumption, which states that the probability
distribution of a variable published by an agent cannot be
changed by the agents that subscribe to it. Under this new
assumption, it is possible to compensate for rumors.
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